Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.404
Filtrar
1.
Pest Manag Sci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661723

RESUMO

BACKGROUND: Aphis gossypii is a worldwide agricultural pest that cause high levels of economic losses by feeding and transmitting virus diseases. It is usually controlled by chemical insecticides, but this could lead to the selection of resistant populations. Several SNPs have been identified associated with insecticide resistance. Monitoring activities to detect the presence of such mutations in field populations can have an important role in insect pest management but, currently, no information on Italian strains is available. RESULTS: The presence of target site mutations conferring resistance to different insecticides was analysed in Italian field collected populations of A. gossypii with an allele specific approach (QSGG, Qualitative Sybr-Green Genotyping). Primers were designed to detect mutations in genes coding acetylcholinesterase (S431F), nicotinic acetylcholine receptor (R81T) and voltage gated sodium channel (M918L and L1014F). S431F was widespread but with high variability across populations. R81T was detected for the first time in Italy but only in 2 populations. The L1014F mutation (kdr) was not found, while in the samples showing the M918L two different nucleotidic substitutions were detected. Mutant allele frequencies were respectively 0.70 (S431), 0.31 (M918) and 0.02 (R81). Further analysis on the voltage gated sodium channel gene showed the presence of eight haplotypes and one nonsynonymous mutation in the gene coding region. CONCLUSION: Multiple target-site mutations were detected within Italian populations. The combinations of genotypes observed in certain locations could affect negatively the control of this pest. Preliminary insights on the genetic structure in the Italian populations of A. gossypii were acquired.

2.
Environ Toxicol Pharmacol ; : 104452, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663648

RESUMO

Individuals working in diverse fields are consistently exposed to work-related pollutants that can impact their overall health. The current study investigated the presence of pollutants in seven different occupational groups and their impact on human health. Biochemical and genetic approaches were employed. Heavy metals were determined by ICP-MS technique. Oxidative stress biochemical markers and molecular analysis of the glutathione transferases gene SNPs (GSTT1, GSTM1, GSTP1), catalase (CAT, rs7943316), and superoxide dismutase (SOD, rs17880487) was carried out. The results revealed a significantly higher quantity of Cd among five occupational groups. Catalase, malonaldehyde, and glutathione was significantly dysregulated. Molecular analysis of the gene SNPs suggests a probable relationship between the antioxidants and the phenotypic expression of the CAT, GSTP1, GSTT1, and GSTM1 SNPs. It is concluded that chronic exposure to occupational contaminants like Cd affects human health through oxidative stress in association with some of their gene SNPs.

3.
Brain Behav ; 14(4): e3486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648391

RESUMO

BACKGROUND: Evidence from observational studies and clinical trials suggests an association between periodontal disease and Alzheimer's disease (AD). However, the causal relationship between periodontal disease and AD remains to be determined. METHODS: We obtained periodontal disease data from the FinnGen database and two sets of AD data from the IEU consortium and PGC databases. Subsequently, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between periodontal disease and AD. RESULTS: The results of the random-effects IVW analysis revealed no evidence of a genetic causal relationship between periodontal disease and AD, regardless of whether the AD data from the IEU consortium or the AD data from the PGC database were utilized. No heterogeneity, multiple effects of levels, or outliers were observed in this study. CONCLUSIONS: Our findings indicate that there is no causal relationship between periodontal disease and AD at the genetic level.

4.
Biology (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38666880

RESUMO

Marine animals possess genomes of considerable complexity and heterozygosity. Their unique reproductive system, characterized by high fecundity and substantial early mortality rates, increases the risk of inbreeding, potentially leading to severe inbreeding depression during various larval developmental stages. In this study, we established a set of inbred families of Fenneropenaeus chinensis, with an inbreeding coefficient of 0.25, and investigated elimination patterns and the manifestations of inbreeding depression during major larval developmental stages. Reduced-representation genome sequencing was utilized to explore the genotype frequency characteristics across two typical elimination stages. The results revealed notable mortality in hatching and metamorphosis into mysis and post-larvae stages. Inbreeding depression was also evident during these developmental stages, with depression rates of 24.36%, 29.23%, and 45.28%. Segregation analysis of SNPs indicated an important role of gametic selection before hatching, accounting for 45.95% of deviation in the zoea stage. During the zygotic selection phase of larval development, homozygote deficiency and heterozygote excess were the main selection types. Summation of the two types explained 82.31% and 89.91% of zygotic selection in the mysis and post-larvae stage, respectively. The overall distortion ratio decreased from 22.37% to 12.86% in the late developmental stage. A total of 783 loci were identified through selective sweep analysis. We also found the types of distortion at the same locus could change after the post-larvae stage. The predominant shifts included a transition of gametic selection toward normal segregation and other forms of distortion to heterozygous excess. This may be attributed to high-intensity selection on deleterious alleles and genetic hitchhiking effects. Following larval elimination, a greater proportion of heterozygous individuals were preserved. We detected an increase in genetic diversity parameters such as expected heterozygosity, observed heterozygosity, and polymorphic information content in the post-larvae stage. These findings suggest the presence of numerous recessive deleterious alleles and their linkage and suggest a major role of the partial dominance hypothesis. The results provide valuable insights into the mechanisms of inbreeding depression in marine animals and offer guidance for formulating breeding strategies in shrimp populations.

5.
Curr Issues Mol Biol ; 46(4): 2819-2826, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666906

RESUMO

DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.

6.
Gene ; 918: 148459, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608794

RESUMO

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.

7.
J Plant Res ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568301

RESUMO

The nurse effect is a positive interaction in which a nurse plant improves the abiotic environment for another species (beneficiary plant) and facilitates its establishment. The evergreen shrub Vaccinium vitis-idaea (a beneficiary plant) grows mainly under the dwarf shrub Pinus pumila (a nurse plant) in the alpine regions of central Japan. However, whether V. vitis-idaea shrubs under various P. pumila shrubs spread through clonal growth and/or seeds remains unclear. We investigated the clonal structure of V. vitis-idaea under the nurse plant P. pumila in Japanese alpine regions. MIG-seq analysis was conducted to clarify the clonal diversity of V. vitis-idaea in isolated and patchy P. pumila plots on a ridge (PATs), and in a plot covered by dense P. pumila on a slope adjacent to the ridge (MAT) on Mt. Norikura, Japan. We detected 28 multilocus genotypes in 319 ramets of V. vitis-idaea across 11 PATs and MAT. Three genets expanded to more than 10 m in the MAT. Some genets were shared among neighboring PATs or among PATs and MAT. These findings suggest that the clonal growth of V. vitis-idaea plays an important role in the sustainability of populations. The clonal diversity of V. vitis-idaea was positively related with the spatial size of PATs and was higher in MAT than in PATs at a small scale. Therefore, the spatial spread of the nurse plant P. pumila might facilitate the nurse effect on the genetic diversity of beneficiary plants, leading to the sustainability of beneficiary populations.

8.
Diagn Microbiol Infect Dis ; 109(3): 116243, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579505

RESUMO

This study avalited relationship between human Methylenetetrahydrofolate reductase (MTHFR) gene (C677T(rs1801133)/A1298C(rs1801131)) variants and homocysteine levels in 168 patients who are infected with Helicobacter pylori, diagnosed to PCR analysis. PCR-RFLP methods were performed to characterize the MTHFR gene C677T/A1298C variants in DNA samples obtained from gastric biopsies this patients. An immunoenzymatically assay was used for quantitative of total homocysteine and folate levels in the plasma of the same individuals. The adopted level statistical significance was to α = 0.05. The frequency of the C677T SNP was higher in infected individuals, wherein those with the CT/TT genotype presented a three-fold higher risk of acquiring Helicobacter pylori infection. The averages of the total homocysteine concentrations were associated with the TT genotype, advanced age and the male sex, but no dependence relationship was found with Helicobacter pylori infection.

9.
J Fish Biol ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556852

RESUMO

Since the first introduction from North America more than a century ago, rainbow trout (Oncorhynchus mykiss) have rapidly established self-sustaining populations in major river basins of Patagonia. Many generations later, only the freshwater resident life history is expressed in the Chubut and Negro rivers of northern Argentinian Patagonia, whereas both the resident and anadromous life histories are found in the Santa Cruz River of southern Argentina. Despite previous studies that have tried to identify the sources of these introduced populations, uncertainty still exists. Here we combined data from many single-nucleotide polymorphisms and microsatellite loci in O. mykiss populations from Argentina and North America to evaluate putative source populations, gene flow between Argentinian river basins, and genetic diversity differences between Argentinian and North American populations. We found that populations from northern and southern Patagonia are highly differentiated and have limited gene flow between them. Phylogeographic analysis also confirmed that they have separate origins, with the northern populations most closely related to the domesticated rainbow trout strains that are raised worldwide and the Santa Cruz River populations most closely related to North American populations from California and Oregon that have an anadromous component. In addition, fish with different life histories in the Santa Cruz River were found to constitute a single interbreeding population. No evidence was found of reduced genetic variation in introduced rainbow trout, suggesting multiple contributing sources. In spite of these advances in understanding, significant questions remain regarding the origins and evolution of the introduced O. mykiss in Patagonia.

10.
Plant Cell Rep ; 43(5): 128, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652306

RESUMO

KEY MESSAGE: GWAS identified six loci at 25 kb downstream of WAK2, a crucial gene for cell wall and callus formation, enabling development of a SNP marker for enhanced callus induction potential. Efficient callus induction is vital for successful oil palm tissue culture, yet identifying genomic loci and markers for early detection of genotypes with high potential of callus induction remains unclear. In this study, immature male inflorescences from 198 oil palm accessions (dura, tenera and pisifera) were used as explants for tissue culture. Callus induction rates were collected at one-, two- and three-months after inoculation (C1, C2 and C3) as phenotypes. Resequencing generated 11,475,258 high quality single nucleotide polymorphisms (SNPs) as genotypes. GWAS was then performed, and correlation analysis revealed a positive association of C1 with both C2 (R = 0.81) and C3 (R = 0.50), indicating that C1 could be used as the major phenotype for callus induction rate. Therefore, only significant SNPs (P ≤ 0.05) in C1 were identified to develop markers for screening individuals with high potential of callus induction. Among 21 significant SNPs in C1, LD block analysis revealed six SNPs on chromosome 12 (Chr12) potentially linked to callus formation. Subsequently, 13 SNP markers were identified from these loci and electrophoresis results showed that marker C-12 at locus Chr12_12704856 can be used effectively to distinguish the GG allele, which showed the highest probability (69%) of callus induction. Furthermore, a rapid SNP variant detection method without electrophoresis was established via qPCR-based melting curve analysis. Our findings facilitated marker-assisted selection for specific palms with high potential of callus induction using immature male inflorescence as explant, aiding ortet palm selection in oil palm tissue culture.


Assuntos
Arecaceae , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Arecaceae/genética , Técnicas de Cultura de Tecidos/métodos , Fenótipo , Genótipo , Loci Gênicos/genética , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética
11.
Forensic Sci Int Genet ; 71: 103049, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38653142

RESUMO

Single Nucleotide Polymorphisms (SNPs), as the most prevalent type of variation in the human genome, play a pivotal role in influencing human traits. They are extensively utilized in diverse fields such as population genetics, forensic science, and genetic medicine. This study focuses on the 'Rita' BeadChip, a custom SNP microarray panel developed using Illumina Infinium HTS technology. Designed for high-throughput genotyping, the panel facilitates the analysis of over 4000 markers efficiently and cost-effectively. After careful clustering performed on a set of 1000 samples, an evaluation of the Rita panel was undertaken, assessing its sensitivity, repeatability, reproducibility, precision, accuracy, and resistance to contamination. The panel's performance was evaluated in various scenarios, including sex estimation and parental relationship assessment, using GenomeStudio data analysis software. Findings show that over 95 % of the custom BeadChip assay markers were successful, with better performance of transitions over other mutations, and a considerably lower success rate for Y chromosome loci. An exceptional call rate exceeding 99 % was demonstrated for control samples, even with DNA input as low as 0.781 ng. Call rates above 80 % were still obtained with DNA quantities under 0.1 ng, indicating high sensitivity and suitability for forensic applications where DNA quantity is often limited. Repeatability, reproducibility, and precision studies revealed consistency of the panel's performance across different batches and operators, with no significant deviations in call rates or genotyping results. Accuracy assessments, involving comparison with multiple available genetic databases, including the 1000 Genome Project and HapMap, denoted over 99 % concordance, establishing the Rita panel's reliability in genotyping. The contamination study revealed insights into background noise and allowed the definition of thresholds for sample quality evaluation. Multiple metrics for differentiating between negative controls and true samples were highlighted, increasing the reliability of the obtained results. The sex estimation tool in GenomeStudio proved highly effective, correctly assigning sex in all samples with autosomal loci call rates above 97 %. The parental relationship assessment of family trios highlighted the utility of GenomeStudio in identifying genotyping errors or potential Mendelian inconsistencies, promoting the application of arrays such as Rita in kinship testing. Overall, this evaluation confirms the Rita microarray as a robust, high-throughput genotyping tool, underscoring its potential in genetic research and forensic applications. With its custom content and adaptable design, it not only meets current genotyping demands but also opens avenues for further research and application expansion in the field of genetic analysis.

12.
Hum Genet ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609570

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.

13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612593

RESUMO

The genetic contributions of Neanderthals to the modern human genome have been evidenced by the comparison of present-day human genomes with paleogenomes. Neanderthal signatures in extant human genomes are attributed to intercrosses between Neanderthals and archaic anatomically modern humans (AMHs). Although Neanderthal signatures are well documented in the nuclear genome, it has been proposed that there is no contribution of Neanderthal mitochondrial DNA to contemporary human genomes. Here we show that modern human mitochondrial genomes contain 66 potential Neanderthal signatures, or Neanderthal single nucleotide variants (N-SNVs), of which 36 lie in coding regions and 7 result in nonsynonymous changes. Seven N-SNVs are associated with traits such as cycling vomiting syndrome, Alzheimer's disease and Parkinson's disease, and two N-SNVs are associated with intelligence quotient. Based on recombination tests, principal component analysis (PCA) and the complete absence of these N-SNVs in 41 archaic AMH mitogenomes, we conclude that convergent evolution, and not recombination, explains the presence of N-SNVs in present-day human mitogenomes.


Assuntos
Doença de Alzheimer , Genoma Mitocondrial , Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Mutação , Nucleotídeos
14.
Evol Appl ; 17(4): e13660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617825

RESUMO

Fragmentation of watercourses poses a significant threat to biodiversity, particularly for migratory fish species. Mitigation measures such as fishways, have been increasingly implemented to restore river connectivity and support fish migration. The effects of such restoration efforts are typically tested using telemetry and fisheries methods, which do not fully capture the broader population movements that may have important consequences for population viability. We performed a before-and-after control-impact (BACI) study using genetic tools (SNPs) to investigate the effect of a newly implemented fishway, aiming to enhance upstream spawning migration of brown trout (Salmo trutta Linnaeus) in a reservoir with two headwater tributaries fragmented by man-made weirs. Another reservoir with two barrier-free tributaries was also analysed as a control. Our results showed that the isolated brown trout population was spawning in the reservoir before the installation of the fishway, and we found genetic structuring and differentiation between fragmented headwater tributaries before the fishway construction, but not in the control reservoir. Unexpectedly, after the fishway construction we observed signals consistent with increased genetic differentiation between populations of newly recruited juvenile fish in the reservoir tributary and fish in the reservoir. We propose this was caused by newly enabled philopatric behaviour of brown trout to their natal spawning tributary. In contrast, we did not find any genetic changes in the tributary without a fishway or in the barrier-free reservoir system. Given the scarcity of similar studies, we advocate for an increased use of genetic analyses in BACI studies to monitor and evaluate the effect of efforts to restore habitat connectivity and inform future management strategies.

15.
PeerJ ; 12: e17220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618568

RESUMO

Background: Single nucleotide polymorphisms (SNPs), as the most abundant form of DNA variation in the human genome, contribute to age-related cataracts (ARC) development. Apoptosis of lens epithelial cells (LECs) is closely related to ARC formation. Insulin-like growth factor 1 (IGF1) contributes to cell apoptosis regulation. Moreover, IGF1 was indicated to exhibit a close association with cataract formation. Afterward, an investigation was conducted to examine the correlation between polymorphisms in IGF1 and the susceptibility to ARC. Methods: The present investigation was a case-control study. Venous blood draws were collected from the participants for DNA genotyping. Lens capsule samples were collected to detect mRNA and apoptosis. TaqMan RT-PCR was used to detect IGF1 polymorphism genotypes and qRT PCR was used to detect IGF1 mRNA levels in LECs. LEC apoptosis was evaluated through flow cytometry. The chi-square test was used to compare differences between ARCs and controls of each SNP. Results: We found that the G allele frequency in the IGF1-rs6218 was higher in the ARCs than in the controls. Furthermore, it was observed that the rs6218 GG genotype exhibited a positive correlation to elevated levels of IGF1 mRNA in LECs. The IGF1 mRNA in the LECs and the apoptosis of LECs in nuclear type of ARCs (ARNC) was higher than the controls. Conclusion: The susceptibility to ARC was related to IGF1-rs6218 polymorphism, and this polymorphism is associated with IGF1 expression at the mRNA level. Moreover, apoptosis in LECs of ARNCs was found to be increased.


Assuntos
Catarata , Fator de Crescimento Insulin-Like I , Humanos , Fator de Crescimento Insulin-Like I/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único/genética , Catarata/genética , RNA Mensageiro/genética , DNA
16.
BMC Res Notes ; 17(1): 103, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605369

RESUMO

In genetic mapping studies involving many individuals, genome-wide markers such as single nucleotide polymorphisms (SNPs) can be detected using different methods. However, it comes with some errors. Some SNPs associated with diseases can be in regions encoding long noncoding RNAs (lncRNAs). Therefore, identifying the errors in genotype file and correcting them is crucial for accurate genetic mapping studies. We develop a Python tool called PySmooth, that offers an easy-to-use command line interface for the removal and correction of genotyping errors. PySmooth uses the approach of a previous tool called SMOOTH with some modifications. It inputs a genotype file, detects errors and corrects them. PySmooth provides additional features such as imputing missing data, better user-friendly usage, generates summary and visualization files, has flexible parameters, and handles more genotype codes. AVAILABILITY AND IMPLEMENTATION: PySmooth is available at https://github.com/lncRNAAddict/PySmooth .


Assuntos
Polimorfismo de Nucleotídeo Único , Software , Humanos , Genótipo , Mapeamento Cromossômico
17.
Evol Appl ; 17(4): e13689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633131

RESUMO

Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.

18.
Front Plant Sci ; 15: 1376381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590753

RESUMO

Chickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives. Furthermore, the study revealed that yield-related traits exhibited high heritability, suggesting their potential suitability for marker-assisted selection. We carried out single-nucleotide polymorphism (SNP) genotyping using the genotyping-by-sequencing (GBS) method for a genome-wide association study (GWAS). Overall, 27 marker-trait associations (MTAs) linked to yield-related traits, among which we identified five common MTAs displaying pleiotropic effects after applying a stringent Bonferroni-corrected p-value threshold of <0.05 [-log10(p) > 4.95] using the BLINK (Bayesian-information and linkage-disequilibrium iteratively nested keyway) model. Through an in-depth in silico analysis of these markers against the CDC Frontier v1 reference genome, we discovered that the majority of the SNPs were located at or in proximity to gene-coding regions. We further explored candidate genes situated near these MTAs, shedding light on the molecular mechanisms governing heat stress tolerance and yield enhancement in chickpeas such as indole-3-acetic acid-amido synthetase GH3.1 with GH3 auxin-responsive promoter and pentatricopeptide repeat-containing protein, etc. The harvest index (HI) trait was associated with marker Ca3:37444451 encoding aspartic proteinase ortholog sequence of Oryza sativa subsp. japonica and Medicago truncatula, which is known for contributing to heat stress tolerance. These identified MTAs and associated candidate genes may serve as valuable assets for breeding programs dedicated to tailoring chickpea varieties resilient to heat stress and climate change.

19.
Sci Rep ; 14(1): 8050, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580665

RESUMO

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Assuntos
Isoenzimas , Pregnenolona , Humanos , Isoenzimas/metabolismo , Escherichia coli/metabolismo , Sulfotransferases/metabolismo , Polimorfismo de Nucleotídeo Único
20.
J Clin Med ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610733

RESUMO

Background: This study examines the impact of CYP3A4 and CYP 3A5 genotypes on tacrolimus (Tac) pharmacokinetics in Romanian kidney transplanted patients. Methods: We included 112 kidney recipients genotyped for CYP3A5*3, CYP3A4*1.001, and CYP3A4*22. Patients were categorized into poor, intermediate, rapid, and ultra-rapid metabolizers based on the functional defects linked to CYP3A variants. Results: Predominantly male (63.4%) with an average age of 40.58 years, the cohort exhibited a high prevalence of the CYP3A4*1/*1 (86.6%) and CYP3A5*3/*3 (77.7%) genotypes. CYP3A4*1.001 and CYP3A5*1 alleles significantly influenced the Tac concentration-to-dose (C0/D) ratio in various post-transplant periods, while the CYP3A4*22 allele showed no such effect (p = 0.016, p < 0.001). Stepwise regression highlighted the CYP3A4*1.001's impact in early post-transplant phases, with hematocrit and age also influencing Tac variability. Conclusions: The study indicates a complex interaction of CYP3A4 and CYP3A5 genotypes on Tac metabolism, suggesting the necessity for personalized medication approaches based on genetic profiling in kidney transplant recipients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...